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Two Approaches to Making Causal Conclusions

The logical approach:

The task is to automate the derivation of (sound) causal conclusions from typically
very well-articulated assumptions

The human-centered approach:

The task is to generate causal conclusions in a human-like way, typically from
(possibly inconsistent) subjective causal judgments obtained from the rich human

experience
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You get to measure a set of attributes of some system
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You get to measure a set of attributes of some system
that are inter-connected in a complex way
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Graph is a representation of an underlying (structural) model M :
a collection of functions {fV }V ∈V and distributions P (U)
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If you sample from M you get evidence of the observational
probability of events e.g. P (X = x, Y = y) or simply P (x, y)
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Might want to reason about the effect of interventions
of your system M
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Interventional probabilities of events, e.g. Px(y),
also written P (yx), PMx(y), P (y | do(x))
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Observational data does not uniquely determine the effect of interventions ever,
see e.g. (Bareinboim et al., 2022, Causal Hierarchy Theorem).

Models M

Models that entail P

M1
M2

Causal effects Px(y)

PM1
x
(y) ̸= PM2

x
(y)
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How then do we arrive at Causal Conclusions?

Wright (1920) was able to predict the effect of interventions by relating the
parameters of an assumedmodel of heredity to the correlations in data.
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How then do we arrive at Causal Conclusions?

Wright (1920) was able to predict the effect of interventions by relating the
parameters of an assumedmodel of heredity to the correlations in data.

Models M

Models that entail P Causal effects Px(y)

Models that entail P and induceWright’s heredity model
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Research Program: Causal Inference

Logical Approach (Pearl, 1995; Rosenbaum and Rubin, 1983; Rubin, 1974).

(1) Query
e.g. Px(y)

(2) Data distribution
e.g. P (x, y, z)

(3) Assumption
e.g. Causal diagram,
independent noise terms,
ignorability assumptions, etc.

Causal inference
engine

Uniquely computable from P?
If so, how?

If not, what is the best bound?
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Research Program: Causal Inference

Assumptions and data constrain the space of possible models and, as a
consequence, the set of possible causal effects.

Models M

Causal effects Px(y)

Models that entail P

Models that entail P and induce causal diagram G

Models that entail P and induce causal diagram G and are linear with non-Gaussian error terms
15



An Identifiable Example

(1) Query
e.g. Px(y)

(2) Data distribution
e.g. P (x, y, z)

(3) Assumption

G

X

Z

Y

In the observational regime G induces,

P (y, z, x) = P (y | x, z)P (x | z)P (z)

In the interventional regime,

Px(y, z) = P (y | x, z)1{X = x}P (z)

The query may be evaluated using,

Px(y) =
∑
z

Px(y, z)

=
∑
z

P (y | x, z)P (z)
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Foundational Result: Truncated Product

Theorem (Truncated Factorization). Given a causal diagram G (no unobserved
confounding) we can always predict the effect of an intervention on X ← x,

Px(V = v) =
∏

V ∈V \X

P (V = v | PaV = paV )
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The Back-door Adjustment Formula

Theorem (Back-door Adjustment). Given a causal diagram G (no unobserved
confounding), we may evaluate the effect of an intervention X ← x by adjustment on
the variables Z not affected by X (its non-descendants),

Px(y) =
∑
z

P (y | x, z)P (z), EPx [Y ] =
∑
z

EP [Y | x, z]P (z)
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The Conditional Exogeneity Restriction

Theorem (Counterfactual / Potential Outcomes Restrictions) If Y X |=X | Z then,

Px(y) =
∑
z

P (y | x, z)P (z), EPx [Y ] =
∑
z

EP [Y | x, z]P (z)
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Identification versus Estimation

1. The regression estimator:

EPx
[Y ] =

∑
z

EP [Y | x, z]P (z) = Ez∼P [ EP [Y | x, z] ]

2. The probability-weighted estimator:

EPx
[Y ] =

∑
x,y,z

y
P (z)1{X = x}

P (x, z)
P (x, y, z) = EP

[
P (z)1{X = x}

P (x, z)
Y

]
= EP

[
1{X = x}
P (x | z)

Y

]
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A non-Identifiable Example

(1) Query
e.g. Px(y)

(2) Data distribution
e.g. P (x, y, z)

(3) Assumption

G

X

Z

Y

In the observational regime G induces,

P (y, x) =
∑
z

P (y, z, x)

=
∑
z

P (y | x, z)P (x | z)P (z)

In the interventional regime,

Px(y) =
∑
z

Px(y, z)

=
∑
z

P (y | x, z)1{X = x}P (z)
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A non-Identifiable Example

(1) Query
e.g. Px(y)

(2) Data distribution
e.g. P (x, y, z)

(3) Assumption

G

X Y

In the observational regime G induces,

P (y, x) =
∑
z

P (y, z, x)

=
∑
z

P (y | x, z)P (x | z)P (z)

In the interventional regime,

Px(y) =
∑
z

Px(y, z)

=
∑
z

P (y | x, z)1{X = x}P (z)
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Research Program: Causal Inference
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Research Program: Causal Inference
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(Wider) Research Program: Causal Inference in Medicine and AI
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(Wider) Research Program: Causal Inference in Medicine and AI
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(Wider) Research Program: Causal Inference in Medicine and AI
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Typical Causal Inference Questions

What effect can we expect from a treatment given to patients with stage III cancer?

What fraction of health-care expenditure can be attributed to respiratory illnesses?

I have been suffering from obesity for two years, would my BMI be different had I
adhered to a vegan diet?

Can hospital admission statistics prove systematic discrimination against a given
minority group?
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Typical Causal Inference Questions
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Concluding Remarks

Many questions are provably difficult to answer from data

In practice, most of the work is in the definition of plausible assumptions rather than
modelling the data as the target for estimation depends a lot on the causal structure
of the variables involved in your problem

Two paradigms for Data Science: Data-driven versusModel-based
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Appendix: External validity

(1) Query
e.g. P ∗

x (y)

(2) Data distribution
e.g. P ∗(z), Px(z, y)

(3) Assumption

X

Z

Y

SX
SZ

The experimental study does not
immediately apply in our target domain as
P ∗
x (y) ̸= Px(y) but it can be computed by

re-weighting according to P ∗(z):

P ∗
x (y) =

∑
z

P ∗
x (y, z)

=
∑
z

P ∗
x (y | z)P ∗

x (z)

=
∑
z

Px(y | z)P ∗(z)

=
∑
z

Px(y, z)
P ∗(z)∑
y Px(z, y)
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