# An Introduction to Causal Inference

**Alexis Bellot** Slides at <alexisbellot.github.io>

Google DeepMind



## Two Approaches to Making Causal Conclusions

The *logical* approach:

The task is to automate the derivation of (sound) causal conclusions from typically very **well-articulated assumptions**

The *human-centered* approach:

The task is to generate causal conclusions in a **human-like** way, typically from (possibly inconsistent) **subjective causal judgments** obtained from the rich human experience

You get to measure a set of attributes of some system



You get to measure a set of attributes of some system that are inter-connected in a complex way



Graph is a **representation** of an underlying (structural) model *M*: a collection of functions  $\{f_V\}_{V\in V}$  and distributions  $P(U)$ 

$$
\begin{array}{c}\nX \\
\hline\nY \\
Y \\
\hline\nY \\
\hline
$$

If you sample from *M* you get evidence of the **observational** probability of events e.g.  $P(X = x, Y = y)$  or simply  $P(x, y)$ 



#### Might want to reason about the effect of **interventions** of your system *M*



**Interventional** probabilities of events, e.g. *Px*(*y*), also written  $P(y_x), P_{M_x}(y), P(y \mid do(x))$ 



**Observational data** does not uniquely determine the **effect of interventions** *ever*, see e.g. [\(Bareinboim et al., 2022,](#page-31-0) Causal Hierarchy Theorem).



 $P_{M_x^1}(y) \neq P_{M_x^2}(y)$ 

## How then do we arrive at Causal Conclusions?

[Wright \(1920](#page-32-0)) was able to *predict the effect of interventions* by relating the parameters of an **assumed model of heredity** to the **correlations in data**.

### How then do we arrive at Causal Conclusions?

[Wright \(1920](#page-32-0)) was able to *predict the effect of interventions* by relating the parameters of an **assumed model of heredity** to the **correlations in data**.



## How then do we arrive at Causal Conclusions?

[Wright \(1920](#page-32-0)) was able to *predict the effect of interventions* by relating the parameters of an **assumed model of heredity** to the **correlations in data**.



Models that **entail** *P* and **induce Wright's heredity model**

## Research Program: Causal Inference

Logical Approach [\(Pearl, 1995](#page-31-1); [Rosenbaum and Rubin, 1983](#page-31-2); [Rubin, 1974](#page-31-3)).



#### Research Program: Causal Inference

Assumptions and data constrain the space of possible models and, as a consequence, the set of possible causal effects.



Models that entail *P*

Models that entail *P* and induce causal diagram *G*

Models that entail *P* and induce causal diagram *G* and are linear with non-Gaussian error terms

#### An *Identifiable* Example



In the *observational* regime *G* induces,

$$
P(y, z, x) = P(y | x, z)P(x | z)P(z)
$$

In the **interventional** regime,

$$
P_x(y, z) = P(y | x, z)1\{X = x\}P(z)
$$

The *query* may be evaluated using,

$$
P_x(y) = \sum_z P_x(y, z)
$$

$$
= \sum_z P(y | x, z)P(z)
$$

#### Foundational Result: *Truncated Product*

In the interventional regime,

$$
P_x(y, z) = P(y | x, z)1\{X = x\}P(z)
$$

**Theorem** *(Truncated Factorization)*. Given a causal diagram *G* (no unobserved confounding) we can always predict the effect of an intervention on  $X \leftarrow x$ ,

$$
P_{\boldsymbol{x}}(\boldsymbol{V}=\boldsymbol{v})=\prod_{V\in\boldsymbol{V}\setminus\boldsymbol{X}}P(V=v\mid Pa_V=pa_V)
$$

#### The *Back-door Adjustment* Formula

$$
P_x(y) = \sum_z P(y \mid x, z)P(z)
$$

**Theorem** *(Back-door Adjustment)*. Given a causal diagram *G* (no unobserved confounding), we may evaluate the effect of an intervention  $X \leftarrow x$  by adjustment on the variables *Z* not affected by *X* (its non-descendants),

$$
P_{\boldsymbol{x}}(\boldsymbol{y}) = \sum_{\boldsymbol{z}} P(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{z}) P(\boldsymbol{z}), \quad \mathbb{E}_{P_{\boldsymbol{x}}}[\boldsymbol{Y}] = \sum_{\boldsymbol{z}} \mathbb{E}_{P}[\boldsymbol{Y} \mid \boldsymbol{x}, \boldsymbol{z}] P(\boldsymbol{z})
$$

#### The *Conditional Exogeneity* Restriction

$$
P_x(y) = \sum_z P(y \mid x, z)P(z)
$$

**Theorem** *(Counterfactual / Potential Outcomes Restrictions)* If  $Y_X \perp X \mid Z$  then,

$$
P_{\boldsymbol{x}}(\boldsymbol{y}) = \sum_{\boldsymbol{z}} P(\boldsymbol{y} \mid \boldsymbol{x}, \boldsymbol{z}) P(\boldsymbol{z}), \quad \mathbb{E}_{P_{\boldsymbol{x}}}[\boldsymbol{Y}] = \sum_{\boldsymbol{z}} \mathbb{E}_{P}[\boldsymbol{Y} \mid \boldsymbol{x}, \boldsymbol{z}] P(\boldsymbol{z})
$$

#### *Identification* versus *Estimation*

$$
\mathbb{E}_{P_{\bm{x}}}[\bm{Y}] = \sum_{\bm{z}} \mathbb{E}_{P}[\bm{Y} \mid \bm{x}, \bm{z}] P(\bm{z})
$$

1. The *regression estimator*:

$$
\mathbb{E}_{P_x}[Y] = \sum_z \mathbb{E}_P[Y \mid x, z] P(z) = \mathbb{E}_{z \sim P} [\mathbb{E}_P[Y \mid x, z]]
$$

2. The *probability-weighted estimator*:

$$
\mathbb{E}_{P_x}[Y] = \sum_{x,y,z} y \frac{P(z)1\{X=x\}}{P(x,z)} \ P(x,y,z) = \mathbb{E}_P \left[ \frac{P(z)1\{X=x\}}{P(x,z)} Y \right] = \mathbb{E}_P \left[ \frac{1\{X=x\}}{P(x \mid z)} Y \right]
$$

#### A *non-Identifiable* Example



In the *observational* regime *G* induces,

$$
P(y, x) = \sum_{z} P(y, z, x)
$$

$$
= \sum_{z} P(y | x, z) P(x | z) P(z)
$$

In the **interventional** regime,

$$
P_x(y) = \sum_z P_x(y, z)
$$
  
= 
$$
\sum_z P(y | x, z) \mathbb{1}\{X = x\} P(z)
$$

#### A *non-Identifiable* Example



In the *observational* regime *G* induces,

$$
P(y, x) = \sum_{z} P(y, z, x)
$$

$$
= \sum_{z} P(y | x, z) P(x | z) P(z)
$$

In the **interventional** regime,

$$
P_x(y) = \sum_z P_x(y, z)
$$
  
= 
$$
\sum_z P(y | x, z) \mathbb{1}\{X = x\} P(z)
$$

## Research Program: Causal Inference



## Research Program: Causal Inference



## (Wider) Research Program: Causal Inference in Medicine and AI



## (Wider) Research Program: Causal Inference in Medicine and AI



## (Wider) Research Program: Causal Inference in Medicine and AI



## Typical Causal Inference Questions

What *effect* can we expect from a treatment given to patients with stage III cancer?

What fraction of health-care expenditure can be *attributed* to respiratory illnesses?

I have been suffering from obesity for two years, would my BMI be different *had I* adhered to a vegan diet?

Can hospital admission statistics prove systematic *discrimination* against a given minority group?

## Typical Causal Inference Questions



## Concluding Remarks

Many questions are *provably* difficult to answer from data

In practice, most of the work is in the definition of plausible assumptions rather than modelling the data as the target for estimation depends a lot on the causal structure of the variables involved in your problem

Two paradigms for Data Science: **Data-driven** versus *Model-based*

## Appendix: External validity



The experimental study does not immediately apply in our target domain as  $P_x^*(y) \neq P_x(y)$  but it can be computed by re-weighting according to *P ∗* (*z*):

*P*

$$
P_x^*(y) = \sum_z P_x^*(y, z)
$$
  
= 
$$
\sum_z P_x^*(y | z) P_x^*(z)
$$
  
= 
$$
\sum_z P_x(y | z) P^*(z)
$$
  
= 
$$
\sum_z P_x(y, z) \frac{P^*(z)}{\sum_y P_x(z, y)}
$$

## Bibliography I

- <span id="page-31-0"></span>E. Bareinboim, J. D. Correa, D. Ibeling, and T. Icard. On pearl's hierarchy and the foundations of causal inference. In *Probabilistic and Causal Inference: The Works of Judea Pearl*, page 507–556. Association for Computing Machinery, NY, USA, 1st edition, 2022.
- <span id="page-31-1"></span>J. Pearl. Causal diagrams for empirical research. *Biometrika*, 82(4):669–688, 1995.
- <span id="page-31-2"></span>P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for causal effects. *Biometrika*, 70(1):41–55, 1983.
- <span id="page-31-3"></span>D. B. Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies. *Journal of educational Psychology*, 66(5):688, 1974.

## Bibliography II

<span id="page-32-0"></span>S. Wright. The relative importance of heredity and environment in determining the piebald pattern of guinea-pigs. *Proceedings of the National Academy of Sciences*, 6(6):320–332, 1920.