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Agenda

1. Data Science: Two paradigms

2. Causal discovery: What is the structure of the world and its relationship to data?

3. Algorithms for causal discovery

4. We have run a causal discovery algorithm, now what?

alexisbellot.github.io/Website/
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Two Paradigms for Data Science

The data-centric paradigm:

All wisdom comes from the sampling distribution of the data P . The challenge is to
manipulate the distribution and ultimately fit the data in order to maximize success

on the training set.
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Two Paradigms for Data Science

The data-centric paradigm:

All wisdom comes from the sampling distribution of the data P . The challenge is to
manipulate the distribution and ultimately fit the data in order to maximize success

on the training set.

The scientific paradigm:

There is a world out there that we seek to model and understand. It is not about the
data itself but about the underlying mechanisms in the world. What does the data

tell me about the world out there?
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Capabilities of Understanding
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Capabilities of Understanding

1. Predict future events from present/past observations

2. Predict the consequences of hypothetical actions, such as treatment plans

3. Provide explanations (attribute reasons) for unanticipated events, why?

4. Design new informed experiments, seek new observations, imagine hypothetical
scenarios
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Typical questions

1. What effect can we expect from a given treatment given to patients with stage III
cancer?

2. What fraction of health-care expenditure can be attributed to respiratory
illnesses?

3. I have been suffering from obesity for two years, would my BMI be different had I
adhered to a vegan diet?

4. Can hospital admission statistics prove systematic discrimination against a
given minority group?
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Typical questions

1. What effect can we expect from a given treatment in patients with stage III
cancer?

2. What fraction of health-care expenditure can be attributed to respiratory
illnesses?

3. I have been suffering from obesity for two years, would my BMI be different had I
adhered to a vegan diet?

4. Can hospital admission statistics prove systematic discrimination against a
given minority group?

Y = f(X), Y ← f(X)
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The Origins of the Causal Revolution

Figure: Path diagram showing the influence of heredity and environment on
the inheritance of color in the guinea pig, reproduced from Wright (1920).
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The Origins of the Causal Revolution

In a linear Gaussian model

Z ← UZ , X ← βZXZ + UX , Y ← βXY X + βZY Z + UY , UZ , UX , UY ∼ Gaussian(0, 1)

There is a correspondence between correlations in data P and path coefficients β

EP [ZX] = EP [Z · (βZXZ + UX)] = βZX

EP [ZY ] = βXY βZX + βZY

EP [XY ] = βXY + βZXβZY .

By solving this set of equations and inferring values for β, one begins to understand
our system.
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Path diagrams are the historical “parent” of causal graphs.

Think of causal graphs as summaries of the underlying model.

M :=


Z ← fZ(UZ)

X ← fX(Z,UX)

Y ← fY (X,Z,UY )

P (UZ , UX , UY )

GM

X

Z

Y

UX UY

UZ
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Path diagrams are the historical “parent” of causal graphs.

Causal graphs as summaries of the underlying model.

M :=


Z ← fZ(UZ)

X ← fX(Z,UX)

Y ← fY (X,Z,UY , UZ)

P (UZ , UX , UY )

GM

X

Z

Y

UX UY

UZ

12



Path diagrams are the historical “parent” of causal graphs.

Causal graphs as summaries of the underlying model.

M :=


Z ← fZ(UZ)

X ← fX(Z,UX)

Y ← fY (X,Z,UY , UZ)

P (UZ , UX , UY )

GM

X

Z

Y
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Path diagrams are the historical “parent” of causal graphs.

Causal graphs as summaries of the underlying model.

Mx :=


Z ← fZ(UZ)

X ← x

Y ← fY (X,Z,UY , UZ)

P (UZ , UX , UY )

GMx

X

Z

Y

EP [Y | do(x)] = EPMx
[Y ] stands for the expectation of Y under a distribution for Y

generated fromM after fixing X ← x.
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Path diagrams are the historical “parent” of causal graphs.

Causal graphs as summaries of the underlying model.

Space of Structural Causal Models

SCMs compatible with GM Causal graph induced by M

GM
M

Space of causal graphs
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Causal Inference

Systematically deducing causal statements from assumptions and data.

(1) Query
e.g. E[Y | do(x)]

(2) Data distribution
e.g. P (x, y, z)

(3) Assumption

X Z Y

Causal inference
engine

Uniquely computable from P?
If so, how?

e.g.
∑

z P (z | x)
∑

x′ P (y | x′, z)P (x′)
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What if you cannot confidently make assumptions?
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What if you cannot confidently make assumptions?

Answer 1 – Give up ... In general, you need some domain knowledge to answer
questions that relate to “understanding” (Bareinboim et al., 2022, Pearl’s Causal
Hierarchy).
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What if you cannot confidently make assumptions?

Answer 1 – Give up ... In general, you need some domain knowledge to answer
questions that relate to “understanding” (Bareinboim et al., 2022, Pearl’s Causal
Hierarchy).

Answer 2 – Conduct sensitivity analysis. How much would different causal
assumptions influence my conclusions?
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What if you cannot confidently make assumptions?

Answer 1 – Give up ... In general, you need some domain knowledge to answer
questions that relate to “understanding” (Bareinboim et al., 2022, Pearl’s Causal
Hierarchy).

Answer 2 – Conduct sensitivity analysis. How much would different causal
assumptions influence my conclusions?

Answer 3 – Learn from data as much as as possible about the causal graph.
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What if you cannot confidently make assumptions?

Answer 1 – Give up ... In general, you need some domain knowledge to answer
questions that relate to “understanding” (Bareinboim et al., 2022, Pearl’s Causal
Hierarchy)

Answer 2 – Conduct sensitivity analysis. How much do different causal assumptions
influence my conclusions.

Answer 3 – Learn from data as much as possible about the causal graph.

1. Understand the implications that causal graphs have on the data you observe.

2. Reverse engineer these implications to determine what set of graphs are
plausible.
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Important distinction to keep in mind

Causal inference involves predicting the value of a causal effect of interest, typically
given a causal graph and data.

Causal discovery involves learning the causal graph from data.
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How does data relate

to causal models?
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What does the causal graph tell us about data?

Space of Structural Causal Models

SCMs compatible with G

G

Space of Causal Graphs

Space of Data Distributions

Family of distributions generated
by SCMs with causal graph G
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What does data tell us about the causal graph?

Space of Structural Causal Models

SCMs compatible with P

Space of Causal Graphs

Graphs compatible with P

P

Space of Data Distributions
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Fundamental Law of Conditional Independence

X R S T U V Y

W P Q

Causal graphs can be used to read off conditional independencies in the
distribution of data P using the d-separation criterion (Pearl, 1988).
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Fundamental Law of Conditional Independence

d-separation criterion. Given a causal graph G ,

(X |= Y | Z)G ⇒ (X |= Y | Z)P .

Conditional independence is an equality relation between probabilities that can be
verified with data.

(X |= Y | Z)P means P (x | z, y) = P (x | z) for any x, z, y.
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d-separation in graphs

Rule 1. A and B are d-connected, if there is an unblocked path between them, that is
a path that does not contain colliders. If no such path exists, we say that A and B are
d-separated.

X R S T U V Y

W P Q

X and T are not d-separated, denoted (X 6⊥⊥ T )G .
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d-separation in graphs

Rule 1. A and B are d-connected, if there is an unblocked path between them, that is
a path that does not contain colliders. If no such path exists, we say that A and B are
d-separated.

X R S T U V Y

W P Q

X and U are d-separated, denoted (X |= U)G .
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d-separation in graphs

Rule 2. A and B are d-connected, conditioned on a set of nodes Z, if there is a
collider-free path between A and B that traverses no member of Z.

(X |= Y | U,P )G ?

X R S T U V Y

W P Q
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d-separation in graphs

Rule 3. If a collider is a member of the conditioning set Z, or has a descendant in Z,
then it no longer blocks any path that traces this collider.

(S |= Y | T,Q)G ?

X R S T U V Y

W P Q
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d-separation in graphs

Rule 3. If a collider is a member of the conditioning set Z, or has a descendant in Z,
then it no longer blocks any path that traces this collider.

(S |= Y | P,Q)G ?

X R S T U V Y

W P Q
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(X |= Y | P,Q,U)G ?

X R S T

C

U V Y

W P Q
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Summary

1. Important property: causal graphs imply conditional independencies in data.

(X |= Y | Z)G ⇒ (X |= Y | Z)P or equivalently (X 6⊥⊥ Y | Z)P ⇒ (X 6⊥⊥ Y | Z)G .

Statistical dependencies in data aremeasurable traces of the (unobserved) SCM.

2. This opens an avenue formodel testing.

34



Model Testing Example: Smoking and lung cancer
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Model Testing Example: Smoking and lung cancer

(In an alternative world) found gene (G) such that makes smoking (S) and cancer (C)

independent.

That is, we collected some data {s(n), g(n), c(n)}Nn=1 and found empirically that
S |= C | G, that is P (S | C,G) = P (S | G).
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Model Testing Example: Smoking and lung cancer

(In an alternative world) found gene (G) such that makes smoking (S) and cancer (C)

independent.

That is, we collected some data {s(n), g(n), c(n)}Nn=1 and found empirically that
S |= C | G, that is P (S | C,G) = P (S | G).

Causal discovery is the problem of looking for causal graphs G of three variables
{S,C,G} that could be reasonable candidates for this (in)dependence structure.
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(S |= C | G)P , (S 6⊥⊥ C)P , (S 6⊥⊥ G)P , (G 6⊥⊥ C)P

Many potential graphs can be ruled out as:

THM: (X |= Y | Z)G ⇒ (X |= Y | Z)P , or equivalently (X 6⊥⊥ Y | Z)P ⇒ (X 6⊥⊥ Y | Z)G

S

G

C S

G

C S

G

C

S

G

C S

G

C S

G

C

S

G

C S

G

C S

G

C
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(S |= C | G)P , (S 6⊥⊥ C)P , (S 6⊥⊥ G)P , (G 6⊥⊥ C)P

Others would be weird / unexpected causal explanations.

S

G

C S

G

C S

G

C S

G

C

Theoretically they are not excluded as:

(X | = Y | Z)G ⇒ (X | = Y | Z)P does not imply that (X | = Y | Z)P ⇒ (X | = Y | Z)G
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Some natural systems likely display a statistical independence without an underlying
structural separation.

Exposure to sun

Skin Tone

Vitamin D generation

However, exposure to sun has been observed to be independent of vitamin D
generation.
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Faithfulness

A distribution P is said to be faithful to G if

(X |= Y | Z)P ⇒ (X |= Y | Z)G

Back to Smoking example

S

G

C S

G

C S

G

C S

G

C

are violations of faithfulness as (S |= C | G)P 6⇒ (S |= C | G)G
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Why do we think Faithfulness is reasonable?

True underlying systems is a linear Gaussian model of the form,

Z ← UZ ,

X ← βZXZ + UX ,

Y ← βXY X + βZY Z + UY .

Imagine we observe the independence (X |= Y )P , that is EP [XY ] = 0.

Violation of faithfulness would mean (X |= Y )P 6⇒ (X |= Y )G which requires

EP [XY ] = βXY + βZXβZY = 0.

42



Under faithfulness,

(X |= Y | Z)G ⇐⇒ (X |= Y | Z)P

Back to Smoking example: (S |= C | G)P , (S 6⊥⊥ C)P , (S 6⊥⊥ G)P , (G 6⊥⊥ C)P

S

G

C S

G

C S

G

C
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Under faithfulness,

(X |= Y | Z)G ⇐⇒ (X |= Y | Z)P

Back to Smoking example: (S |= C | G)P , (S 6⊥⊥ C)P , (S 6⊥⊥ G)P , (G 6⊥⊥ C)P

S

G

C S

G

C S

G

C

S

G

C S

G

C S

G

C S

G

C
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Colliders

Imagine we record a fourth variable: the price of cigarettes P .

In the data, we find that (P |= G,C)P and (P 6⊥⊥ G,C | S)P .

Under faithfulness, P must be d-separated from G and C .

P

S

G

C

P

S

G

C

P

S

G

C

P

S

G

C

P

S

G

C

P

S

G

C
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Colliders

Imagine we record a fourth variable: the price of cigarettes P .

In the data, we find that (P |= G,C)P and (P 6⊥⊥ G,C | S)P .

Under faithfulness, P must be d-separated from G and C .

P

S

G

C

P

S

G

C

P

S

G

C

P

S

G

C

P

S

G

C

P

S

G

C
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Colliders

Imagine we record a fourth variable: the price of cigarettes P .

In the data, we find that (P |= G,C)P and (P 6⊥⊥ G,C | S)P .

Under faithfulness, P must be d-separated from G and C .

P

S

G

C

P

S

G

C

P

S

G

C

Representation of
equivalence class
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Algorithms

Most causal discovery algorithms are designed to exploit faithfulness

(X |= Y | Z)P ⇐⇒ (X |= Y | Z)G

Space of causal graphs

Graphs consistent with
an assumed faithful distribution P

Distribution with a set
of observed independencies

P

Space of distributions
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Constraint-based

Causal Discovery
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Causal discovery based on independence testing

Constrained-based causal discovery algorithms explicitly test for conditional
independencies to determine what edges we can rule out in the underlying graph.

Two phases, starting from a fully connected (undirected) graph:

1. Remove edges: If two variables are conditionally independent remove edge
(skeleton).

2. Orient edges.
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Phase 1: Skeleton recovery

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

4 variables: X,Z,W, Y .

X

Z W

Y
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Phase 1: Skeleton recovery

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .

X

Z W

Y
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Phase 1: Skeleton recovery

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .

X

Z W

Y

X

Z W

Y
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Phase 2: Edge orientation

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

2. Orient edges as much as possible: look for v-structures.

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .
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Phase 2: Edge orientation

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

2. Orient edges as much as possible: look for v-structures

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .

X

Z W

Y

X

Z W

Y

X

Z W

Y

X

Z W

Y
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Phase 2: Edge orientation

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

2. Orient edges as much as possible: look for v-structures

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .

X

Z W

Y

X

Z W

Y

X

Z W

Y

X

Z W

Y

All can be ruled out because (Z 6⊥⊥W | Y,X)P .
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Phase 2: Edge orientation

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

2. Orient edges as much as possible: look for v-structures

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .

X

Z W

Y

Is there anything else that can be established?
57



Phase 2: Edge orientation

1. Recover skeleton: Start with complete graph, remove edge between any two
nodes that can be made (conditionally) independent.

2. Orient edges as much as possible: look for v-structures

4 variables: X,Z,W, Y , and we find (empirically) that (Z |=W | X)P , (X |= Y | Z,W )P .

X

Z W

Y

X

Z W

Y

X

Z W

Y

X

Z W

Y
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With some additional rules to orient edges, this algorithm is called IC / PC algorithm
(Spirtes et al., 2000; Verma and Pearl, 1990).

Theorem. Under an assumption of faithfulness, with an oracle for conditional
independence, the IC/PC algorithm is guaranteed to recover the Markov equivalence
class of the true graph.
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Good software packages for constraint-based causal discovery: causal-learn
(Zheng et al., 2023) in python, pcalg (Kalisch et al., 2012) in R.

IC∗ / FCI algorithm in the presence of unobserved confounding.
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Score-based

causal discovery
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A different approach to causal discovery:

1. Define a criterion or score S to evaluate how well the causal graph fits the data.

2. Search over the space of causal graphs for a graph achieving the maximal score.
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Space of Structural Causal Models

SCMs compatible with G

G

Space of causal graphs

Space of Data Distributions

Distributions compatible with G

Each graph G is associated with a family of distributions {PM(v) :M∈M(G)}.
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What makes a good score?

1. Soundness: Better score for valid causal explanation.

Space of Graphs

G
H

P

Actual underlying data distribution

Space of Distributions
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What makes a good score?

1. Soundness: Better score for valid causal explanation.

In the data, X 6⊥⊥W .

G X

Z W

Y

H X

Z W

Y
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What makes a good score?

1. Soundness: Better score for valid causal explanation

2. Parsimony: Smaller models are preferred.

Space of Graphs

G
H

P

Actual underlying data distribution

Space of Distributions
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What makes a good score?

1. Soundness: Better score for valid causal explanation

2. Parsimony: Smaller models are preferred.

In the data, Z |= X .

G X

Z W

Y

H X

Z W

Y
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Score-based causal discovery is the product of a long legacy within the Bayesian
model selection (Gelman et al., 1995) literature.

A score S : (G, v) 7→ R.

Themarginal likelihood as a score

P (G | v) ∝ P (G) P (v | G)︸ ︷︷ ︸
marginal likelihood
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The marginal likelihood P (v | G) is difficult to compute.

Most methods attempt to approximate its value.
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The Bayesian information criterion (BIC) for a candidate model G is an asymptotic
approximation to the marginal likelihood.

It requires a parametric model for the distribution of variables P (v | G,θ).

The BIC is defined as

SBIC(v,G) := −2 logP (v | G, θ̂MLE)︸ ︷︷ ︸
log-likelihood of the data

+ |θ| logn︸ ︷︷ ︸
Penalty for models with more parameters

The BIC is (asymptotically) sound and parsimonious for scoring causal graphs
(without unobserved confounding) (Haughton, 1988).
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BIC: Example Z W

YConsider scoring the causal graph G ,
assuming the underlying SCM is linear and Gaussian,Z

W

Y

 =

 0 0 0

0 0 0

θY Z θYW 0


Z

W

Y

+

UZ

UW

UY

 , Ui ∼ N (0, σ2
i ), i ∈ {Z,W, Y }

A total of 5 parameters: (θY Z , θYW , σ2
Z , σ

2
W , σ2

Y ).
Maximum likelihood estimates and log-likelihood can be computed in closed-form.

SBIC = −2 logP (z, w, y | θ̂Y Z , θ̂YW , σ̂2
Z , σ̂

2
W , σ̂2

Y ) + 5 logn
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Searching in the space of graphs

Number of DAGs with 2 variables: 3
Number of DAGs with 3 variables: 25
Number of DAGs with 4 variables: 543
Number of DAGs with 5 variables: 29281
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Greedy search

Progressively explore the space of DAGs by making localmoves (Meek, 1997).

1. Evaluate / score neighbouring graphs

2. Move to highest scoring candidate graph
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2 Phases in Greedy search algorithm

First, add edges until score cannot be improved.

Space of Graphs

H
P

Actual underlying data distribution

Space of Distributions
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2 Phases in Greedy search algorithm

Second, remove edges until score cannot be improved.

Space of Graphs

G
H

P

Actual underlying data distribution

Space of Distributions
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Greedy Equivalence Search

Progressively explore the space of equivalence classes (Meek, 1997).

1. Evaluate / score neighbouring equivalence classes

2. Move to highest scoring candidate equivalence class
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Greedy Equivalence Search

Progressively explore the space of equivalence classes (Meek, 1997).

1. Evaluate / score neighbouring equivalence classes

2. Move to highest scoring candidate equivalence class
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Greedy Equivalence Search

Theorem (Chickering, 2002). Under an assumption of faithfulness, the equivalence
class returned by Greedy Equivalence Search (GES) coincides with the equivalence
class of the true causal graph asymptotically.
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Search with gradient-based optimization
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Search with gradient-based optimization

A Directed Acyclic Graph (DAG) can be modelled by an adjacency matrix.

Z

W

Y

 =

 0 0 0

0 0 0

θY Z θYW 0


Z

W

Y

+

UZ

UW

UY


Is equivalent to saying

Z W

Y

+ Linear functional relations
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Search with gradient-based optimization

A Directed Acyclic Graph (DAG) can be modelled by an adjacency matrix.


X1

...
Xk

 =


w11 w12 . . .
...

. . .

wk1 wkk



X1

...
Xk

+


U1

...
Uk



Presumably we could recover a good estimate of W by running linear regressions, and
interpret non-zero entries as the presence of an edge.

W to be a valid DAG must be acyclic.
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Search with gradient-based optimization

Learning causal graphs can be thought of as parameter optimization under
constraints.

max
W∈Rk×k

Score(W,X), subject to W being a DAG.
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Acyclicity

What does an acyclic W look like?

W =

 0 w12 w13

w21 0 w23

w31 w32 0


wij = 0 if and only if Xj → Xi not in GW .

One useful note: W encodes the paths of length 1 in GW , i.e. w11 = 0 means that there
is no path of length 1 that starts and ends at X1.
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Acyclicity

What does an acyclic W look like?

W 2 =

 0 w12 w13

w21 0 w23

w31 w32 0


 0 w12 w13

w21 0 w23

w31 w32 0

 =


w12w21 + w13w31 . . .

...
. . .


What does it mean for the first diagonal entry to be zero?

Diagonal entries of W 2 give paths of length 2 starting and ending at the same node.
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Acyclicity

A square matrix W that does not have cycles of any length satisfies the following
equality (Zheng et al., 2018),

Trace(W +W 2 +W 3 + . . . ) = 0

Equivalent to,

Trace
(
I +W +

1

2!
W 2 +

1

3!
W 3 + . . .

)
= Trace(I)

Equivalent to,

Trace (expW )− d = 0
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Search with gradient-based optimization

Learning causal graphs can be thought of as parameter optimization under
constraints.

max
W∈Rk×k

Score(W,X), subject to W being a DAG.

written,

max
W∈Rk×k

Score(W,X) + λ · (Trace(expW )− d)
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Causal discovery

with two variables only
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Typically, if X 6⊥⊥ Y in a system of two variables we cannot establish anything about
their causal structure, that is,

X Y

Under some conditions, we can find, however, an asymmetry in data generated by a
model X → Y or by a model Y → X .
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Example: Asymmetry in bi-variate associations

X

UX UY

Y
SCM for X,Y is

Y ← logistic(X) + UY , X ← UX , UX ∼ U(−6, 6), UY ∼ N (0, 0.01)

(a) Y as a function of X . (b) X as a function of Y .
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Example: Asymmetry in bi-variate associations

X

UX UY

Y

(a) Y as a function of X .

Fit Y ≈ f(X).
Look at the residuals ÛY := Y − f(X).

You find that approximately ÛY |= X .
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Example: Asymmetry in bi-variate associations

X

UX UY

Y

(a) Y as a function of X . (b) X as a function of Y .

Fit X ≈ f(Y ).
Look at the residuals ÛX := X − f(Y ).

You find that approximately ÛX 6⊥⊥ Y .
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We expect regression in one direction to give independent residuals but not in the
other! (Shimizu et al., 2006)

Criterion for inferring causal direction:

If residuals are independent of regression covariate, then correct causal direction.

Works for (unconfounded) additive noise models of the form,

Y ← f(X) + U, X |= U
f is non-linear or,

U is non-Gaussian
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Summary and Aspirations
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Causal Discovery

Space of Structural Causal Models

SCMs compatible with P

Space of Causal Graphs

Graphs compatible with P

P

Space of Data Distributions
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End-to-end Causal Inference

Systematically deducing causal statements from an equivalence class and data.

(1) Query
e.g. E[Y | do(x)]

(2) Data distribution
e.g. P (x, y, z)

(3) Assumption
e.g. Equivalence class,
output of causal discovery algorithm

Causal inference
engine

Uniquely computable from P?
If so, how?
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